Extensions 1→N→G→Q→1 with N=C2xC22 and Q=C22

Direct product G=NxQ with N=C2xC22 and Q=C22
dρLabelID
C23xC22176C2^3xC22176,42

Semidirect products G=N:Q with N=C2xC22 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC22):C22 = D4xD11φ: C22/C1C22 ⊆ Aut C2xC22444+(C2xC22):C2^2176,31
(C2xC22):2C22 = D4xC22φ: C22/C2C2 ⊆ Aut C2xC2288(C2xC22):2C2^2176,38
(C2xC22):3C22 = C2xC11:D4φ: C22/C2C2 ⊆ Aut C2xC2288(C2xC22):3C2^2176,36
(C2xC22):4C22 = C23xD11φ: C22/C2C2 ⊆ Aut C2xC2288(C2xC22):4C2^2176,41

Non-split extensions G=N.Q with N=C2xC22 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC22).C22 = D4:2D11φ: C22/C1C22 ⊆ Aut C2xC22884-(C2xC22).C2^2176,32
(C2xC22).2C22 = C11xC4oD4φ: C22/C2C2 ⊆ Aut C2xC22882(C2xC22).2C2^2176,40
(C2xC22).3C22 = C4xDic11φ: C22/C2C2 ⊆ Aut C2xC22176(C2xC22).3C2^2176,10
(C2xC22).4C22 = Dic11:C4φ: C22/C2C2 ⊆ Aut C2xC22176(C2xC22).4C2^2176,11
(C2xC22).5C22 = C44:C4φ: C22/C2C2 ⊆ Aut C2xC22176(C2xC22).5C2^2176,12
(C2xC22).6C22 = D22:C4φ: C22/C2C2 ⊆ Aut C2xC2288(C2xC22).6C2^2176,13
(C2xC22).7C22 = C23.D11φ: C22/C2C2 ⊆ Aut C2xC2288(C2xC22).7C2^2176,18
(C2xC22).8C22 = C2xDic22φ: C22/C2C2 ⊆ Aut C2xC22176(C2xC22).8C2^2176,27
(C2xC22).9C22 = C2xC4xD11φ: C22/C2C2 ⊆ Aut C2xC2288(C2xC22).9C2^2176,28
(C2xC22).10C22 = C2xD44φ: C22/C2C2 ⊆ Aut C2xC2288(C2xC22).10C2^2176,29
(C2xC22).11C22 = D44:5C2φ: C22/C2C2 ⊆ Aut C2xC22882(C2xC22).11C2^2176,30
(C2xC22).12C22 = C22xDic11φ: C22/C2C2 ⊆ Aut C2xC22176(C2xC22).12C2^2176,35
(C2xC22).13C22 = C11xC22:C4central extension (φ=1)88(C2xC22).13C2^2176,20
(C2xC22).14C22 = C11xC4:C4central extension (φ=1)176(C2xC22).14C2^2176,21
(C2xC22).15C22 = Q8xC22central extension (φ=1)176(C2xC22).15C2^2176,39

׿
x
:
Z
F
o
wr
Q
<